
inside heads

Ivan J. (parazyd@dyne.org)

March 18, 2017

Guidelines for a heads developer.
Revision 1.2.1

https://heads.dyne.org

1

https://heads.dyne.org


Preface

In a world of bloat, pain, and undocumented things, I hope to have this booklet here
to help you and me in our endeavors with heads. The general philosophy heads follows is
minimalism, elegance, non-intrusion, and cleverness. Strive with those points and keep your
mind sane.

inside heads is a collection of hand-picked brain farts that will be helpful for anyone
wanting to develop heads. So let’s dive into it...

2



Contents
1 Introduction 4

2 The heads blend 5
2.1 libdevuansdk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 From start to finish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 heads’ kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Kernel configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The rootfs overlay 9
3.1 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 heads-generate-passphrase . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 heads-init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 heads-shutdown-menu . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 heads-torify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.5 heads-update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Updating heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Building heads 11
4.1 Obtaining the build-system . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Firing up live-sdk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2.1 bootstrap complete base . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.2 blend preinst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.3 iso prepare strap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.4 build kernel arch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.5 iso setup isolinux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.6 iso write isolinux cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.7 blend postinst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.8 iso squash strap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.9 iso xorriso build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Handling bugs 14
5.1 The bugtracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1.1 Reporting bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.2 Fixing bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Talking heads 15

3



1 Introduction

heads is a libre GNU/Linux distribution loosely based around the concepts of the Tails1GNU/Linux
distribution. heads strives to be a minimal live distribution for activists, journalists, geeks,
and privacy-aware people in general. This is mainly achieved by utilizing the Tor2network to
the maximum. It is one of the key features: routing all network traffic in heads through the
Tor network. This enables one to stay as anonymous as possible when using the Internet.

Though important, anonymity is not the only thing needed. Security is an important
aspect as well. heads tries to achieve it by using a grsecurity3-patched kernel, and offering
only libre software. While libre software can still be malicious, chances are, it is not. At
least less possible than proprietary software which is much more difficult to audit (since one
can not read its code).

All of these quirks and features will be mentioned further in the document.

1https://tails.boum.org
2https://www.torproject.org
3https://grsecurity.net

4

https://tails.boum.org
https://www.torproject.org
https://grsecurity.net


2 The heads blend

At the core of the heads build system is a file called heads.blend. A blend is a concept
I developed for libdevuansdk4. Since you probably have no idea what libdevuansdk even is,
I’ll start by getting a bit into that first.

2.1 libdevuansdk

libdevuansdk is a shell script library that emerged when I began maintaining the Devuan
SDK5. The Devuan SDK6is a small framework written in zsh, and currently consists of
libdevuansdk as such, and wrappers that are supposed to be written around it. Currently:
arm-sdk, live-sdk, and vm-sdk. heads’ build system utilizes the live-sdk.

libdevuansdk gathers common knowledge that is utilized by the beforementioned sdks,
and as the name says - is a common library of sorts. All functions that are not declared in
the heads blend, are either a part of live-sdk or libdevuansdk. The concept is such that the
blend can override functions of what is above it (live-sdk, and then libdevuansdk). live-sdk
does the same. This makes it easy to do situation-specific overrides while not breaking the
API.

2.2 Configuration

The first thing the blend does is sourcing a config file. The config file is where all the
software versions, their locations, list of packages to install and remove are kept.

extra packages is an array of Devuan package names that we append because it is
already a part of libdevuansdk and live-sdk. This array holds all software installed in heads
that exists as a package in the Devuan repositories.

purge packages is an array of packages that should be purged from the system when it’s
the time to do it (in a certain step of libdevuansdk).

finalize purge packages is an array of packages that should be purged from the system

5



at the final blend step. It is an array specific to the blend.

4https://git.devuan.org/sdk/libdevuansdk
5https://git.devuan.org/sdk/
6Simple Distro Kit

6

https://git.devuan.org/sdk/libdevuansdk
https://git.devuan.org/sdk/


2.3 From start to finish

The basic workflow of functions to bootstrap an entire system is the following (the func-
tions whose names don’t start with ”blend” are either parts of live-sdk or libdevuansdk):

bootstrap_complete_base
blend_preinst
iso_prepare_strap
build_kernel_${arch}
iso_setup_isolinux
iso_write_isolinux_cfg
blend_postinst
iso_squash_strap
iso_xorriso_build

I will not cover the foreign functions here, only the blend-specific.

Currently in blend preinst there is only the creation of the user ”luther”, so that’s that.

build kernel arch is architecture specific (i386/amd64) and will be explained in the kernel
chapter.

In blend postinst there is more magic happening. Here we compile and install packages
from source to the system, clone the rootfs overlay and do the final fixes and hacks. The
rootfs overlay is also a chapter of its own.

7



2.4 heads’ kernel

The kernel heads uses is a non-standard one as some might have expected. It’s a specific
version, patched with grsecurity and uses a configuration specifically tailored for heads. The
sources (and the git log) can be found here: https://github.com/headslive/linux-heads).

Luckily, as heads is using git7for version control, it’s not needed to have separate patches
stored somewhere as they are now easily available from the git log. The deblobbing scripts
from linux-libre8, however, are downloaded from their website.

Before I mentioned a function called build kernel arch. It is somewhat like a function
pointer and the function gets called depending on what architecture is declared for the
current build. This function will clone the kernel git repo (or pull the latest master if it
is already there), compile it, and install it along with the modules in the heads bootstrap
directory. It is a function already declared in libdevuansdk, but here we override it since we
are building a custom kernel.

2.5 Kernel configuration

To be written.

7https://github.com/headslive/
8http://www.fsfla.org/ikiwiki/selibre/linux-libre/

8

https://github.com/headslive/linux-heads
https://github.com/headslive/
http://www.fsfla.org/ikiwiki/selibre/linux-libre/


3 The rootfs overlay

If the blend is the brains of heads, then the rootfs overlay is the heart of heads9. This
overlay is a git repository residing in the root directory of heads’ filesystem. It holds all
specific configuration files, scripts, sources, and other miscellaneous files that are a part of
heads. https://github.com/headslive/rootfs-overlay

3.1 Scripts

heads-specific scripts usually reside in /usr/local/bin/heads-*. They are mostly small
helper scripts that I will document here for the sake of reference.

3.1.1 heads-generate-passphrase

Generates a random passphrase for the root user on every boot. Drops it once in luther’s
.zshrc and shows it only once when a terminal is opened and is lost unless it’s remembered
or changed. Executed by /etc/rc.local.

3.1.2 heads-init

A tiny case clause, used by shutdown-menu to either shut down or reboot.

3.1.3 heads-shutdown-menu

A script that utilizes zenity10to give a graphical shutdown menu from AwesomeWM.

3.1.4 heads-torify

The iptables black magic we use to route all network traffic through Tor. Executed by
/etc/rc.local.

3.1.5 heads-update

A script to update the system. Explained in the updating heads section.

9

https://github.com/headslive/rootfs-overlay


3.2 Updating heads

As mentioned, the rootfs overlay is a git repository. We can utilize this to provide seamless
updates to users, by pushing commits to the rootfs overlay git repository. Keep in mind heads
as such is never going to phone home11, but it’s up to the user to choose if they will update
or not. In any case, these will mostly be minor updates from heads’ side, and if there are
any important (read: security) updates, we will rather roll out a new release than relying on
people updating their rootfs overlay.

However, since git is awesome (read: decentralized), it’s easy to host one’s own rootfs
overlay if one wants to customize their heads setup, have a certain kind of persistence in
the system or just easily grab files when one boots into the live system. The possibilites are
endless.

9such organs, much anatomy
10https://help.gnome.org/users/zenity/stable/
11https://en.wikipedia.org/wiki/Phoning_home

10

https://help.gnome.org/users/zenity/stable/
https://en.wikipedia.org/wiki/Phoning_home


4 Building heads

A little bit of spoonfeeding is always nice. Let’s go through the process of building a heads
ISO... Learning this process is essential, but don’t worry, it’s the easiest process in the world
of building ISOs.

4.1 Obtaining the build-system

I use a Devuan based system to bootstrap heads images, and I can’t promise it’s going to
work anywhere else (It should, but I haven’t tried it ever, nor do I plan to). So let’s dive
into this beautiful process of obtaining the heads build system and baking our ISO :)

First off, we need to grab the build-system git repository. It contains git submodules, so
we append –recursive to the args:

$ git clone https://github.com/headslive/build-system.git --recursive

This will give us all we need. Check out the README to find out what dependencies
you need to install to run it on your system. If you are on the master git branch, you are
using the development version - that’s what you should use for testing and development, but
if you require an image for daily usage, you should probably checkout the latest tag you can
find in the git history.

4.2 Firing up live-sdk

Okay, so once we have our git repo cloned and possibly checked out, we go into the live-sdk
directory of the repo. From there you start a vanilla zsh shell, source live-sdk to enter its
environment and initialize the blend to build heads:

$ cd live-sdk
$ zsh -f
$ source sdk
$ load devuan amd64 heads

Once done, you will be notified all is loaded and ready to run. There is a helper command
that will run the following functions in sequence, and exit if one of them exits. It is called
build iso dist.

11



4.2.1 bootstrap complete base

This function is the one that provides us with a vanilla base system that is as minimal as
it can be, and then we build up upon it. It uses our extra packages array and installs our
packages. The function also creates a tarball of the minimal system so it is not needed to
debootstrap for every build. If the tarball is found when starting a build, it will be extracted
and updated.

4.2.2 blend preinst

This one was mentioned before. It is blend-specific, and currently only adds the ”luther”
user.

4.2.3 iso prepare strap

A function that will install the packages needed for a liveCD to function properly using
apt.

4.2.4 build kernel arch

Mentioned before as well. This will clone (or update) the latest linux-heads sources,
compile them, and install them into the heads bootstrap directory (our filesystem). The
function exists in libdevuansdk, but is overriden with the heads blend.

4.2.5 iso setup isolinux

After the kernel is installed, we have to copy it for isolinux to use it. This function also
copies the needed isolinux binaries where they have to be.

4.2.6 iso write isolinux cfg

This function drops the isolinux configuration file into the isolinux directory. Exists in
libdevuansdk, but is overriden with the blend because of branding.

4.2.7 blend postinst

Mentioned in an earlier chapter. This function calls other blend install software functions
to compile and install specific software like Tor, GNU IceCat and such from source, because

12



their packages aren’t provided in Devuan. It also clones the rootfs-overlay and sets it up.
Finally, it executes the hacks and fixes that can be found in the blend finalize function, and
cleans up the filesystem, making it ready for packing. The function is blend-specific.

4.2.8 iso squash strap

After our filesystem is ready, this will create a SquashFS from the bootstrap directory.
This is what holds our read-only live system.

4.2.9 iso xorriso build

Finally, this function creates a bootable ISO from our SquashFS and the ISOLINUX files
we have copied earlier. The ISO can be found in dist/ after xorriso is finished.

13



5 Handling bugs

Yes, a bunch of bugs.
https://github.com/headslive/bugtracker

5.1 The bugtracker

heads doesn’t have the usual Bugzilla bugtracker or similar, it rather utilizes GitLab issues
to track bugs, feature requests and such. You can find the link above.

5.1.1 Reporting bugs

To report bugs, you should be registered at https://github.com. Although, if you are
a heads developer, my guess is you already are registered. To report a bug, you simply
open a new issue in the bugtracker repository. Keep in mind it’s always a good idea to
search through existing bugs before reporting anything. It will make me hate you a little bit
less12. Make sure to write your bug report as descriptive as you can, and if applicable, tag
it accordingly. Take look at the existing issues as a guideline.

5.1.2 Fixing bugs

To fix bugs, search through the existing issues and find out how to resolve them. Simple
as that. Once you think you have a bugfix, report it on the issue and it will be reviewed.

12I love you all equally though.

14

https://github.com/headslive/bugtracker
https://github.com


6 Talking heads

Discussion around and about heads can be done on IRC13and the mailing list14. These are
the prefered way of communication about all kinds of topics. IRC is a good place to ask if
you are not sure if you should report a bug or not - for example. The mailing list is a good
place to talk about anything. But again, if it’s a bug, just report it on the bugtracker.

So that’s it. I hope this has helped you at least somehow. If you feel like contributing
anything (time or bitcoins), please see: https://heads.dyne.org/contribute.html

Happy hacking!

13https://heads.dyne.org/irc.html
14https://mailinglists.dyne.org/cgi-bin/mailman/listinfo/heads

15

https://heads.dyne.org/contribute.html
https://heads.dyne.org/irc.html
https://mailinglists.dyne.org/cgi-bin/mailman/listinfo/heads

	Introduction
	The heads blend
	libdevuansdk
	Configuration
	From start to finish
	heads' kernel
	Kernel configuration

	The rootfs overlay
	Scripts
	heads-generate-passphrase
	heads-init
	heads-shutdown-menu
	heads-torify
	heads-update

	Updating heads

	Building heads
	Obtaining the build-system
	Firing up live-sdk
	bootstrap_complete_base
	blend_preinst
	iso_prepare_strap
	build_kernel_arch
	iso_setup_isolinux
	iso_write_isolinux_cfg
	blend_postinst
	iso_squash_strap
	iso_xorriso_build


	Handling bugs
	The bugtracker
	Reporting bugs
	Fixing bugs


	Talking heads

